

MEMBER Irda

Vishay Semiconductors

Integrated Low Profile Transceiver Module for Telecom Applications - IrDA Standard

Not for New Design

Description

The miniaturized TFDU4201 is an ideal transceiver for applications in telecommunications like mobile phones and pagers.

The infrared transceiver is compatible to the IrDA Low Power physical layer specification version up to a data rate of 115 kbit/s. For higher output intensities with an identical package solution the TFDU4202 is designed.

The device is mechanically designed for lowest profile with a height of only 2.8 mm.

Features

- Package Dimension: L 7.1 mm x W 4.55 mm x H 2.75 mm
- Compatible to IrDA Low Power Standard
- SMD Side View Soldering
- Lowest Power Consumption 55 $\mu\text{A},$ Receive Mode, 1 μA Shutdown
- Only 30 mA IRED Peak Current
 During Transmission
- Wide Supply Voltage Range (2.4 V to 3.6 V)
- Operational down to 2.0 V

- Fewest External Components
- Internal Current Control
- Tri-State Output (Rxd)
- High EMI Immunity
- SD Pin

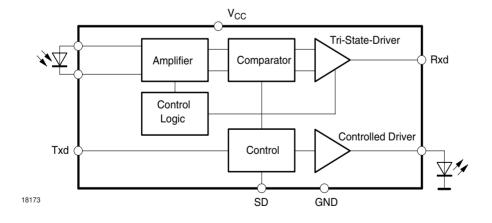
Applications

- Mobile Phones
- Pagers
- Personal Digital Assistants (PDA)
- Handheld Battery Operated Equipment

Vishay Semiconductors

MicroFace SIR Selector Guide

Part Number	Main Feature	Rxd Output in Txd Mode	IRED Drive Capability	IrDA Compliance	Power Supply
TFDU4201	Low Power 20 cm/ 30 cm IrDA Standard SD pin	Optical Feedback ^{**)} (for e.g. self-test mode)	Internally current controlled, adjusted for le > 4 mW/sr	Low Power SIR, pairs of TFDU4201 operate typically over a range of > 70 cm on axis	One power supply only, due to the very low current consumption no need for split power supply
TFDU4202	Split Power Supply Increased Range 70 cm	Quiet ^{**)} necessary for some WinCE [®] applications, Rxd grounded when V _{CC} = 0 V	Internally current controlled to cover extended range of 70 cm. Current level can be reduced by an external resistor	Low Power SIR as e.g. TFDU4201, pairs of TFDU4202 operate typically up to full IrDA SIR distance >1 m	Split power supply ^{*)} can be used when operated at higher IRED current levels
TFDU4203	Similar to TFDU4201 with increased range 70 cm, SD pin	Quiet ^{**)} necessary for some WinCE [®] applications	Internally current controlled to cover extended range of 70 cm. Current level can be reduced by an external resistor	Low Power SIR as e.g. TFDU4201, pairs of TFDU4203 operate typically up to full IrDA SIR distance >1 m	One power supply only


*) Split power supply: The receiver circuit only is connected to a regulated power supply. The high IRED current can be supplied by a less controlled power line or directly from the battery. That feature saves power supply costs. TELEFUNKEN introduced this feature as the world first with the 4000 series (US Patent No. 6,157,476)

^{**)} Depending on the designs different applications need an optical feedback for test purposes or must be quiet (e.g. in Windows CE[®] applications).

Parts Table

Part Description		Qty / Reel
TFDU4201-TR1	Orientated in carrier tape for side view in mounting	750 pcs.
TFDU4201-TR3	Orientated in carrier tape for side view in mounting	2250 pcs

Functional Block Diagram

Pinout TFDU4201 weight 100 mg

18228

Pin Description

Pin Number	Function	Description	I/O	Active
1	IRED GND	IRED Cathode, Ground		
2	IRED GND	IRED Cathode, Ground		
3	Rxd	Output, Received Data, tri-state, floating in shutdown mode	0	LOW
4	V _{CC}	Supply Voltage		
5	GND	Ground		
6	GND	Ground		
7	Txd	Input, Transmit data	I	HIGH
8	SD	Shutdown	Ι	HIGH

Absolute Maximum Ratings

Reference Point Ground (Pin 6), unless otherwise noted.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supply voltage range		V _{CC}	- 0.5		+ 6	V
Input current	all pins				10	mA
Output sink current					25	mA
Power dissipation	see Figure	P _{tot}			200	mW
Junction temperature		ТJ			125	°C
Ambient temperature range (operating)		T _{amb}	- 25		+ 85	°C
Storage temperature range		T _{stg}	- 40		+ 100	°C
Soldering temperature	t = 20 s @ 215 °C, see Vishay Semiconductors IrDA design guide			215	240	°C
Average IRED current*)		I _{IRED(DC)}			125	mA
Repetitive pulsed IRED current*)	< 90 µs, t _{on} < 20 %	I _{IRED(RP)}			500	mA
Transmitter data input voltage		V _{Txd}	- 0.5		+ 3.6	V
Receiver data output voltage		V _{Rxd}	- 0.5		V _{CC} + 0.5	V

¹⁾ Maximum values of IRED: Cannot be reached due to implemented current source.

Vishay Semiconductors

Eye safety information

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Virtual source size	Method: (1 - 1/e) encircled	d		2		mm
	energy					

*) Compatible to Class 1 operation of IEC 60825 or EN60825 with worst case IrDA SIR pulse pattern, 115.2 kbit/s also in single fault conditions

Electrical Characteristics

Transceiver

Tested for the following parameters (V_{CC} = 2.4 V to 3.6 V, 25 $^{\circ}$ C, unless otherwise stated).

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supported data rates	base band		9.6		115.2	kbit/s
Supply voltage range	operational down to 2.0 V	V _{CC}	2.4		3.6	V
Supply current	$V_{CC} = 2.4 V$ to 5.5 V, $E_e = 0$, receive mode, full temperature range	I _S		50	80	μΑ
	V _{CC} = 2.4 V to 5.5 V, 10 klx sunlight, receive mode, full temperature range	۱ _S		70	90	μA
	shutdown mode, entire temperature range 25 °C	I _{Sshdown}		10	100	nA
	$V_{SD} = 0.9 \times V_{CC}$, entire temperature range 25 °C	I _{Sshdown}		5		nA
IRED peak current transmitting	V _{CC} = 5.5 V, SIR transmit	I _{Str}		38	45	mA
	V _{CC} = 2.4 V, SIR transmit	I _{Str}		35	40	mA
	V _{CC} = 2.0 V, SIR transmit	I _{Str}		31	35	mA
Transceiver "power on" settling time	time from switching on V_{CC} to established specified operation				50	μs

Transceiver

 V_{CC} = 2.8 V, 25 °C, unless otherwise stated.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supply current	$E_e = 0$, receive mode, full	۱ _S		55	80	μΑ
	temperature range					
	E _e = 10 klx sunlight, receive	۱ _S		70	90	μA
	mode, full temperature range					
	shutdown mode V_{SD} = 2.3 V,	I _{Sshdown}		10	100	nA
	entire temperature range 25 °C					
	$E_e = 0$, entire temperature range	I _{Sshdown}		5	10	nA
	25 °C					
	$E_e = 10$ klx, standard illuminant	I _{Sshdown}		55		nA
	A, entire temperature range					
	25 °C					
IRED peak current transmitting	SIR transmit	I _{Str}		30	42	mA
Transceiver "power on" settling	time from switching on V_{CC} to				50	μs
time	established specified operation					

TFDU4201 Vishay Semiconductors

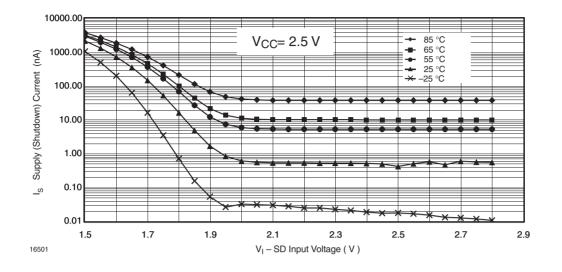


Figure 1. Shutdown Supply Current as a Function of Temp. and Logic Level at SD Input pin (typical device)

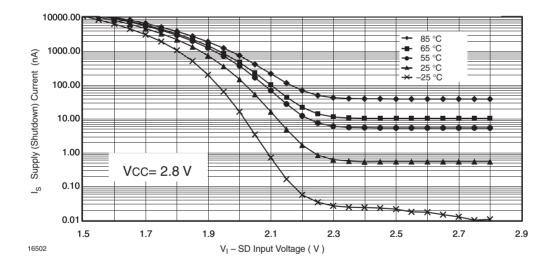


Figure 2. Shutdown Supply Current as a Function of Temp. and Logic Level at SD Input pin (typical device)

Vishay Semiconductors

Logic Input and Output

 V_{CC} = 2.8 V, 25 °C, unless otherwise stated.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Input voltage high	SD, Txd	V _{IH}	2.3			V
Input voltage low	SD, Txd	V _{IL}			0.5	V
Output voltage high	Rxd, I _{OH} = - 2 mA	V _{OH}	2.3			V
Output voltage low	Rxd, I _{OL} = 2 mA	V _{OL}			0.4	V

Optoelectronic Characteristics

Receiver

Tested for the following parameters (V_{CC} = 2.4 V to 3.6 V, 25 $^{\circ}$ C, unless otherwise stated).

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Minimum detection threshold irradiance	$\mid \alpha \mid \le \pm 15^{\circ},$ V _{CC} = 2.0 V to 5.5 V	E _{e, min}		25	40	mW/m ²
Maximum detection threshold irradiance	$\mid \alpha \mid \le \pm 90$ °, $V_{CC} = 5$ V	E _{e, max}	3300	5000		W/m ²
	$\mid \alpha \mid \le \pm$ 90 °, V _{CC} = 3 V	E _{e, max}	8000	15000		W/m ²
Logic low receiver input irradiance		E _{e, max,low}			4	mW/m ²
Output voltage Rxd	active, C = 15 pF, R = 2.2 k Ω	V _{OL}		0.5	0.8	V
	non active, C = 15 pF, R = 2.2 k Ω	V _{OH}	V _{CC} - 0.5			V
Output current Rxd	V _{OL} < 0.8 V				4	mA
Rise time @ load	C = 15 pF, R = 2.2 kΩ	t _r	20		200	ns
Fall time @ load	$C = 15 \text{ pF}, \text{ R} = 2.2 \text{ k}\Omega$	t _f	20		200	ns
Rxd signal electrical output pulse width	2.4 kbit/s, input pulse width 1.41 μs to 3/16 of bit duration	t _p	1.4		20	μs
	115.2 kbit/s, input pulse width 1.41 μ s to 3/16 of bit duration	tp	1.4		4.5	μs
Output delay time (Rxd), leading edge optical input to electrical output	output level = 0.5 x V _{CC} @ 40 mW/m ²	t _{dl}		1	2	μs
Jitter, leading edge of output signal	over a period of 10 bit, 115.2 kbit/s	tj			300	ns
Output delay time (Rxd), trailing edge optical input to electrical output	output level = 0.5 x V _{CC} 40 mW/m ²	t _{dt}			6.5	μs
Latency		tL		100	500	μs

Transmitter

Tested for the following parameters (V_{CC} = 2.4 V to 3.6 V, - 25 °C to 85 °C, unless otherwise stated.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Logic low transmitter input voltage		V _{IL(Txd)}	0		0.8	V
Logic high transmitter input voltage		V _{IH(Txd)}	2.4		V _{CC}	V
Controlled current	$I_e = 5$ mW/sr to 70 mW/sr in α $\leq \pm 15^{\circ}$, voltage range 2.4 V to 5.5 V	I _{F1}	25	30	42	mA
Output radiant intensity	$I_{F1} = 25 \text{ mA to } 42 \text{ mA},$ α $\leq \pm 15^{\circ}$, current controlled, 20 % duty cycle	Ι _e	5	13	70	mW/sr
Peak emission wavelength		λ _p	880		900	nm
Spectral emission bandwidth		·		60		nm
Optical rise/fall time	115.2 kHz square wave signal (duty cycle 1 : 1)		1.4		200	ns
Optical output pulse duration	input pulse duration 1.6 μs			1.6	2.2	μs
Output radiant intensity	logic low level				0.04	μW/sr
Overshoot, optical					25	%
Rising edge peak to peak jitter	over a period of 10 bits, independent of information content	tj			0.2	μs

Current Derating Diagram

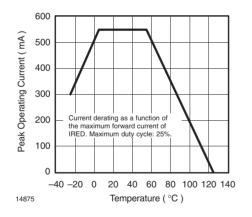
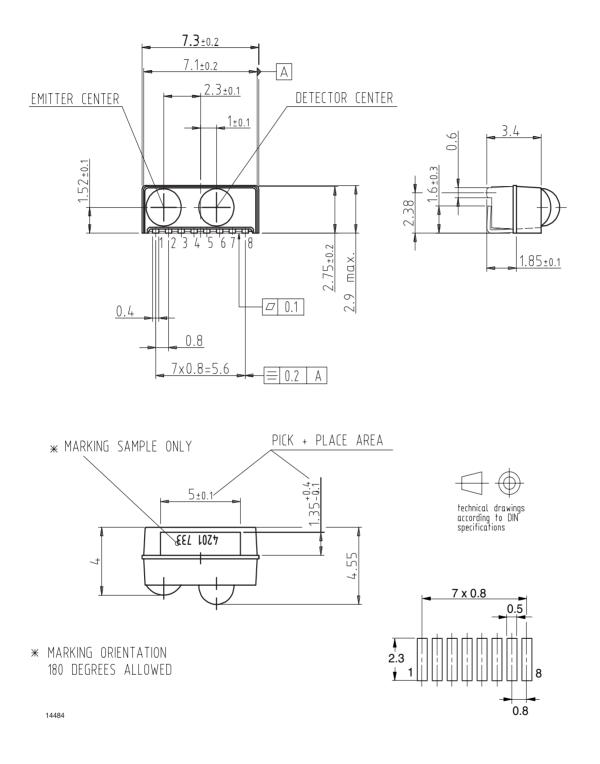



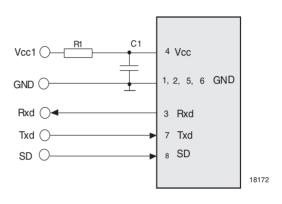
Figure 3. Current Derating Diagram

Shows the current derating of the emitter chip as a function of ambient temperature and duty cycle, see absolute maximum ratings. This is for information only. The TFDU4201 has an internal current control. Therefore, most of this curve is not relevant for this device because the higher currents are not intended to be used.

Vishay Semiconductors

Appendix Application Hints

The TFDU4201 does not need any external component when operated with a "clean" power supply as e.g. two NiCd or NiMH rechargeable batteries in series. In a noisy ambient it is recommended to add a capacitor (and perhaps a resistor) for noise suppression. RF noise picked up from the ambient on the supply lines can be easily suppressed by a 100 nF ceramic capacitor (X7R type is recommended placed close to the $V_{CC}\,\text{pin}.$ Low frequency noise can be suppressed by an RC combination as shown in the schematics. R1 can vary from 0 Ω to 5 Ω . The C1 range is up to 4.7 μ F. During transmission V_{CC} should not drop below the min. power supply voltage. A combination of a tantalum with a ceramics capacitor will be still more efficient in very noisy conditions However, one should keep in mind a low impedance wiring is more cost efficient than adding larger capacitors.


Shut down

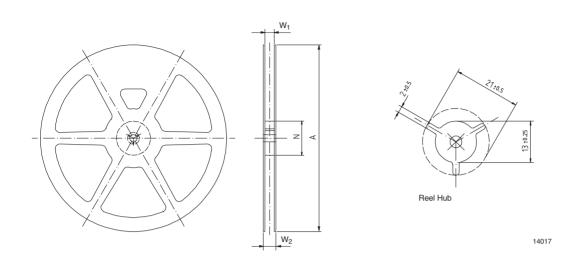
To shut down the TFDU4201 into a standby mode the SD pin has to be set active. For minimizing the shutdown current it is recommended to use a logic high level of > $0.9 \times V_{CC}$.

Latency

The receiver is in specified conditions after the defined latency. In a UART related application after that time (typically 50 ms) the receiver buffer of the UART must be cleared. Therefore the transceiver has to wait at least the specified latency after receiving the last bit before starting the transmission to be sure that the corresponding receiver is in a defined state. For more application circuits, see IrDC Design Guide and TOIM4232 data sheet.

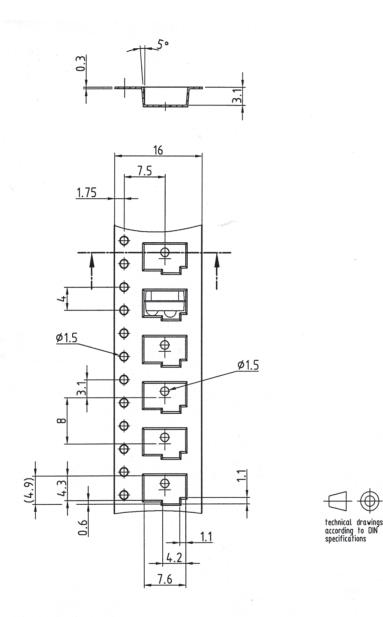
Recommended Circuit Diagram

Table 1Recommended Application Circuit Components


Component	Recommended Value	Vishay Part Number
C1	4.7 μF, 16 V	293D 475X9 016B 2T
R1	5 Ω max	

This is a recommendation for a combination to start with to exclude power supply effects. Optimum, from a costs point of view, to work without both.

Vishay Semiconductors


Reel Dimensions

mm	mm	mm	mm	mm	mm	mm
Tape Width	A max.	Ν	W ₁ min.	W ₂ max.	W ₃ min.	W ₃ max.
16	180	60	16.4	22.4	15.9	19.4
16	330	50	16.4	22.4	15.9	19.4

Tape Dimensions in mm

Drawing-No.: 9.700-5227.01-4 Issue: 3; 03.09.99

18258

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423