

Application Specific Discretes A.S.D.

APPLICATIONS

Where transient overvoltage protection in ESD sensitive equipment is required, such as :

-COMPUTERS

- PRINTERS
- COMMUNICATION SYSTEMS
- GSM HANDSETS AND ACCESSORIES
- OTHER TELEPHONE SET

FEATURES

- . 4 UNIDIRECTIONAL TRANSIL FUNCTIONS
- LOW LEAKAGE CURRENT: I_R max. < 20 μA at V_{BR}
- 500 W PEAK PULSE POWER (8/20 μs)

DESCRIPTION

The ESDAxxSC5 and ESDAxxSC6 are monolithic voltage suppressors designed to protect components which are connected to data and transmission lines against ESD.

They clamp the voltage just above the logic level supply for positive transients, and to a diode drop below ground for negative transient.

BENEFITS

High ESD protection level : up to 25 kV High integration Suitable for high density boards

COMPLIES WITH THE FOLLOWING STAN-DARDS:

IEC61000-4-2 : level 4

MIL STD 883C-Method 3015-6 : class3 (human body model)

ESDAxxSC5 ESDAxxSC6 QUAD TRANSIL ARRAY

FOR ESD PROTECTION

FUNCTIONAL DIAGRAM SOT23-5L

SOT23-6L

March 2000 Ed: 5D

ESDAxxSC5 / ESDAxxSC6

Symbol	Test conditions	Value	Unit
V _{PP}	ESD discharge - MIL STD 883C - Method 3015-6 IEC61000-4-2 air discharge IEC61000-4-2 contact discharge	25 16 9	kV
P _{PP}	Peak pulse power (8/20µs) note1	500	W
Tj	Junction temperature	150	°C
T _{stg}	Storage temperature range	-55 to +150	°C
TL	Lead solder temperature (10 second duration)	260	°C
T _{op}	Operating temperature range	-40 to +125	°C

ABSOLUTE MAXIMUM RATINGS (Tamb = 25°C)

note 1 : 300 W for ESDA14V2SC5 AND ESDA14V2SC6 **note 2**: Evolution of functional parameters is given by curves.

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C)

Symbol	Parameter
V _{RM}	Stand-off voltage
V _{BR}	Breakdown voltage
V _{CL}	Clamping voltage
I _{RM}	Leakage current
IPP	Peak pulse current
ατ	Voltage temperature coefficient
С	Capacitance
Rd	Dynamic resistance
VF	Forward voltage drop

	v	BR @	IR	I _{RM} @	V _{RM}	Rd	αΤ	С	V _F @	D IF
Types	min.	max.		max.		typ.	max.	typ.	max.	
Types						note 1	note 2	0V bias		
	V	V	mA	μΑ	V	mΩ	10 ⁻⁴ /°C	pF	V	mA
ESDA5V3SC5 ESDA5V3SC6	5.3	5.9	1	2	3	230	5	280	1.25	200
ESDA6V1SC5 ESDA6V1SC6	6.1	7.2	1	20	5.25	350	6	190	1.25	200
ESDA14V2SC5 ESDA14V2SC6	14.2	15.8	1	5	12	650	10	100	1.25	200
ESDA25SC6	25	30	1	1	24	1000	10	60	1.2	10

 $\begin{array}{l} \textbf{note 1}: Square \ pulse, \ lpp = 15A, \ tp=2.5\mu s.\\ \textbf{note 2}: \ \Delta \ VBR = \alpha T^* \ (Tamb \ -25^\circ C) \ ^* \ VBR \ (25^\circ C) \end{array}$

57

CALCULATION OF THE CLAMPING VOLTAGE

USE OF THE DYNAMIC RESISTANCE

The ESDA family has been designed to clamp fast spikes like ESD. Generally the PCB designers need to calculate easily the clamping voltage V_{CL} . This is why we give the dynamic resistance in addition to the classical parameters. The voltage across the protection cell can be calculated with the following formula:

VCL = VBR + Rd IPP

Where lpp is the peak current through the ESDA cell.

DYNAMIC RESISTANCE MEASUREMENT

The short duration of the ESD has led us to prefer a more adapted test wave, as below defined, to the classical $8/20\mu s$ and $10/1000\mu s$ surges.

2.5µs duration measurement wave.

As the value of the dynamic resistance remains stable for a surge duration lower than 20µs, the 2.5µs rectangular surge is well adapted. In addition both rise and fall times are optimized to avoid any parasitic phenomenon during the measurement of Rd.

ESDAxxSC5 / ESDAxxSC6

Fig. 1: Peak power dissipation versus initial junction temperature.

Fig. 3: Clamping voltage versus peak pulse current (Tj initial = 25 °C). Rectangular waveform tp = $2.5 \,\mu$ s.

Fig. 5: Relative variation of leakage current versus junction temperature (typical values).

Fig. 2: Peak pulse power versus exponential pulse duration (Tj initial = 25 °C).

Fig. 4: Capacitance versus reverse applied voltage (typical values).

Fig. 6: Peak forward voltage drop versus peak forward current (typical values).

47/

They serve as parallel protection elements,

connected between the signal line and ground. As the transient rises above the operating voltage of

the device, the TVS array becomes a low

impedance path diverting the transient current to

ESD protection by ESDAXXXSCX

Electrostatic discharge (ESD) is a major cause of failure in electronic systems.

Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient overvoltage to a low enough level such that damage to the protected semiconductor is prevented.

Surface mount TVS arrays offer the best choice for minimal lead inductance.

I/ O LINES

ground.

The ESDAxxSCx array is the ideal board level protection of ESD sensitive semiconductor components.

The tiny SOT23-5L and SOT23-6L packages allow design flexibility in the high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening against ESD.

ADVICE FOR OPTIMIZING CIRCUIT BOARD LAYOUT

Circuit board layout is a critical design step in the suppression of ESD induced transients. The following guidelines are recommended :

- The ESDAxxSC5/6 should be placed as close as possible to the input terminals or connectors.
- The path length between the ESD suppressor and the protected line should be minimized
- All conductive loops, including power and ground loops should be minimized
- The ESD transient return path to ground should be kept as short as possible.
- Ground planes should be used whenever possible.

57

ESDAxxSC5 / ESDAxxSC6

ORDER CODE

MARKING

MARKING

Туре	Marking
ESDA6V1SC5	EC61
ESDA6V1SC6	ES61
ESDA5V3SC5	EC53

Packaging: Standard packaging is tape and reel.

PACKAGE MECHANICAL DATA SOT23-5L

FOOT PRINT

Туре	Marking
ESDA5V3SC6	ES53
ESDA14V2SC5	EC15
ESDA14V2SC6	ES15
ESDA25SC6	ES25

Packaging: Standard packaging is tape and reel.

	DIMENSIONS							
REF.	Mi	llimete	ers	Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	0.90		1.45	0.035		0.057		
A1	0		0.15	0		0.006		
A2	0.90		1.30	0.035		0.0512		
b	0.35		0.50	0.0137		0.02		
С	0.09		0.20	0.004		0.008		
D	2.80		3.00	0.11		0.118		
Е	1.50		1.75	0.059		0.0689		
е		0.95			0.0374			
Н	2.60		3.00	0.102		0.118		
L	0.10		0.60	0.004		0.024		
М			10°			10°		

6/7

S

PACKAGE MECHANICAL DATA

SOT23-6L

	DIMENSIONS							
REF.	Mi	illimete	ers	Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	0.90		1.45	0.035		0.057		
A1	0		0.15	0		0.006		
A2	0.90		1.30	0.035		0.0512		
b	0.35		0.50	0.0137		0.02		
С	0.09		0.20	0.004		0.008		
D	2.80		3.00	0.11		0.118		
E	1.50		1.75	0.059		0.0689		
е		0.95			0.0374			
н	2.60		3.00	0.102		0.118		
L	0.10		0.60	0.004		0.024		
М			10°			10°		

FOOT PRINT

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57